Complexity and Algorithms for Euler Characteristic of Simplicial Complexes
نویسندگان
چکیده
We consider the problem of computing the Euler characteristic of an abstract simplicial complex given by its vertices and facets. We show that this problem is #P-complete and present two new practical algorithms for computing Euler characteristic. The two new algorithms are derived using combinatorial commutative algebra and we also give a second description of them that requires no algebra. We present experiments showing that the two new algorithms can be implemented to be faster than previous Euler characteristic implementations by a large margin.
منابع مشابه
Finite Spaces and Applications to the Euler Characteristic
The aim of this paper is to introduce finite spaces and their simplicial complexes. Next, we give an application to combinatorics in the form of a relation between the Euler characteristic and the Möbius function. We begin by giving an overview of finite topological spaces. We introduce beat points and weak homotopy equivalences. Then, we show that finite spaces are weak homotopy equivalent to ...
متن کاملHomology of Boolean functions and the complexity of simplicial homology
We study the topology of Boolean functions from the perspective of Simplicial Homology, and characterize Simplicial Homology in turn by using Monotone Boolean functions. In so doing, we analyze to what extent topological invariants of Boolean functions (for instance the Euler characteristic) change under binary operations over Boolean functions and other operations, such as permutations over th...
متن کاملA Characterization of the Angle Defect and the Euler Characteristic in Dimension 2
The angle defect, which is the standard way to measure the curvatures at the vertices of polyhedral surfaces, goes back at least as far as Descartes. Although the angle defect has been widely studied, there does not appear to be in the literature an axiomatic characterization of the angle defect. In this paper a characterization of the angle defect for simplicial surfaces is given, and it is sh...
متن کاملA Characterization of the Angle Defect and the Euler Characteristic in Dimension 2 Preliminary Draft
The angle defect, which is the standard way to measure curvature at the vertices of polyhedral surfaces, goes back at least as far as Descartes. Although the angle defect has been widely studied, there does not appear to be in the literature an axiomatic characterization of the angle defect. We give a characterization of the angle defect for simplicial surfaces, and we show that variants of the...
متن کاملOn Finite Arithmetic Simplicial Complexes
We compute the Euler-Poincaré characteristic of quotients of the Bruhat-Tits building of PGL(n) under the action of arithmetic groups arising from central division algebras over rational function fields of positive characteristic. We use this result to determine the structure of the quotient simplicial complex in certain cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 50 شماره
صفحات -
تاریخ انتشار 2013